Fill in the blanks:

8.1.      The magnitude of the correlation is indicated by the correlation _____ which can range from -1.00 to +1.00.

8.2.      The most common and efficient way to present the correlations of several variables with each other is by using a(n) ______ table.

8.3.      The correlation between two variables can be shown graphically by a ________.

8.4.          The null hypothesis predicts that the correlation coefficient is equal to _______.

8.5.           The Spearman rank order correlation is used when the variables to be correlated are measured on a(n)  ______ scale.

8.6.      The hypothesis that states that rÂ¹0 is an example of a(n) alternative/null hypothesis.

8.7.      When an increase in one variable is associated with a decrease in the other variable, the correlation between these two variables is positive/negative.

8.8.      In order to use the Pearson product-moment correlation, the variables to be correlated should be measured on an ordinal/interval scale.

8.9.      When the points on a scattergram go from the bottom left to the top right they represent a positive/negative correlation.

8.10.       The true correlation between two variables may be underestimated when the variance of one of the variables is very high/very low.

8.11.       When the null hypothesis is rejected at p<.001, it means that the chance that r=0 is very small/very high.

8.12.       The null hypothesis is rejected when the obtained correlation coefficient is higher/lower than the critical value.

8.13     Which correlation coefficient (a or b) shows a stronger relationship between the two variables being correlated?

a.         X1&Y1: r =  .85

b.         X2&Y2: r = -.94

8.14.    Following are two scattergrams (in Figure A and in Figure B). Four different correlation coefficients are listed under each scattergram. Choose the coefficient that best matches each scattergram.

Y                                                                       Y  Â·                                                                            Â·  Â·

Â·            Â·                                                                              Â·  Â·

Â·                 Â·                                                                Â·    Â·

Â·             Â·                                                                  Â·    Â·

Â·                Â·                                                          Â·  Â·    Â·

Â·                                                                                Â·   Â·   Â·

Â·               Â·                                                       Â·  Â·

Â·                Â·                                                             Â·    Â·

Â·                Â·                                                    Â·    Â·

Â·                                                           Â·    Â· X X

Figure A                                                         Figure B

A1. r= .50                                                      B1. r= -.57

A2. r= .78                                                      B2. r=   .92

A3. r= -.10                                                      B3. r=   .38

A4. r= -.89                                                      B4. r=  -.91

8.15     Following is a scattergram showing the scores of 8 statistics students on two tests, X and Y. Each of the first 7 students is represented by a dot and their scores are listed in the table that follows. Use the scattergram to find the scores of student #8 on test X and test Y. The location of this student on the scattergram is represented by a large dot (â€¢) next to number 8.

Y 1                             4 4                           Â·                              Â·

5          2 3                           Â·          Â·

6          8 2                           Â·          Â·

7          3 1               Â·          Â·      X 1          2        3        4        5

Student #       X         Y

1              2          4

2              3          3

3              2          1

4              5          4

5              2          3

6              2          2

7              1          1

8              ?          ?

8.16     What do these two scattergrams have in common?

Y                                                              Y  Â·   Â·    Â·  Â·Â·    Â·   Â·Â·   Â·    Â·

Â·   Â·    Â·  Â·Â·    Â·   Â·Â·   Â·     Â·

Â·   Â·    Â·  Â·Â·    Â·   Â·Â·   Â·    Â·  Â·Â·                                    Â·   Â·    Â·  Â·  Â·  Â·  Â·Â·  Â·Â·Â·Â·  Â·

Â·   Â·    Â·  Â·Â·    Â·   Â·Â·   Â·    Â·  Â·Â·

Â·   Â·    Â·  Â·Â·    Â·   Â·Â·   Â·    Â·

Â·   Â·    Â·  Â·Â·    Â·   Â·Â·   Â·    Â·  Â·Â·

Â·    Â·  Â·Â·    Â·   Â·Â·   Â·    Â·  Â·Â·  8.17     Estimate (do not calculate!) the correlation between the advertising spending and sales that were obtained over a 5 year span. Indicate whether the correlation is positive or negative, and whether it is high or low. Explain your answer.

1                               \$21,000                   \$83

2                                 15,000                      70

3                                 17,000                      68

4                                 25,000                      90

5                                 19,000                      74

8.18     Estimate (do not calculate!) which of the two sets of consumer research studies (A&B or X&Y) has a higher correlation. Explain your answer.

Set 1                                                               Set 2

Study #           A         B                                 Study #    &nb

## Why US?

##### 100% Confidentiality

Information about customers is confidential and never disclosed to third parties.

##### Timely Delivery

No missed deadlines – 97% of assignments are completed in time.

##### Original Writing

We complete all papers from scratch. You can get a plagiarism report.

##### Money Back

If you are convinced that our writer has not followed your requirements, feel free to ask for a refund. 